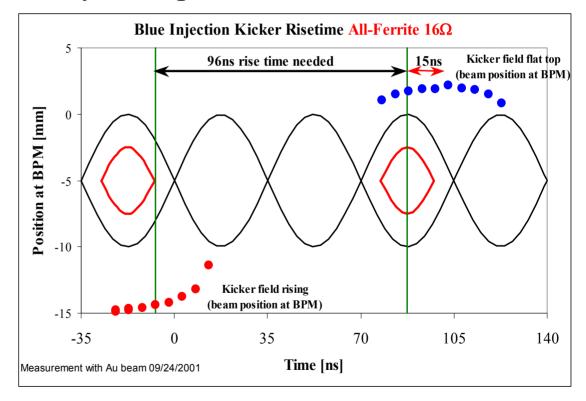
112 Bunches in RHIC

Wolfram Fischer

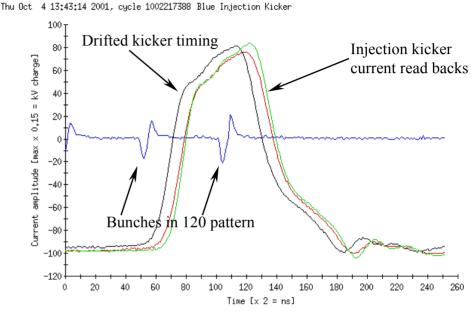
RHIC Retreat, Montauk 5 March 2002

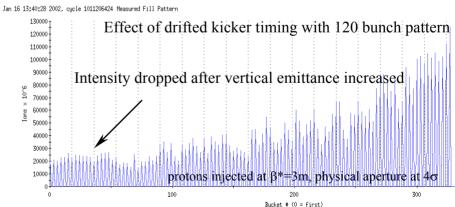
112 Bunches


• What is the best number of bunches?

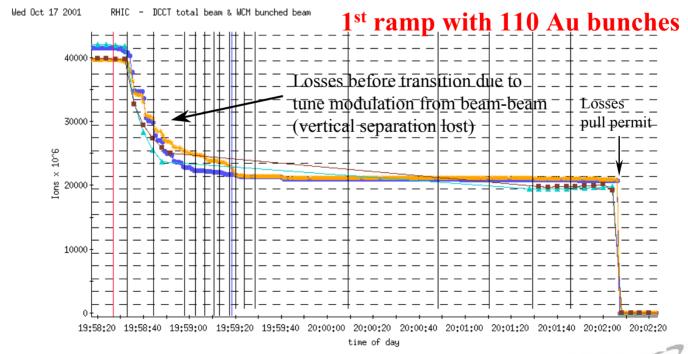
Lumi \propto (No of bunches) \times (No particles per bunch)²

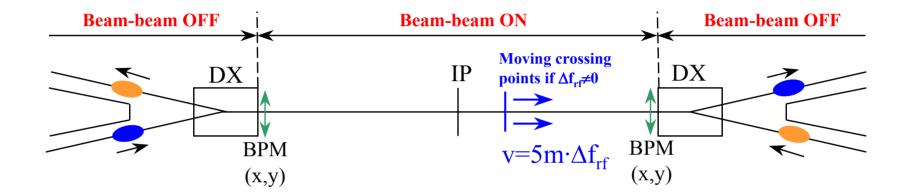
- 112 bunches could potentially double the luminosity, but only if the bunch current can be maintained
- If possible, it is better to increase the bunch current, even if the number of bunches is decreased
- 112 bunch operation is beyond design manual specs
- Areas of concern for 112 bunch operation:
 - Injection kickers
 - RF
 - BPMs (\rightarrow T. Satogata)
 - Pressure rise (\rightarrow S.Y. Zhang, H.-C. Hseuh)
 - Transition (\rightarrow C. Montag, M. Blaskiewicz)


Injection Kicker Rise Time


- New all-ferrite injection kickers (H. Hahn) more robust, no failure so far (had to replaced 3 of the old kickers)
- Rise time **marginal**, may be improved:
 - Better matching of termination (cable voltage too high?)
 - Injecting closer to flat top front
 - Support from injection damper
- Shorter bunches are better

Injection Kicker Timing Stability

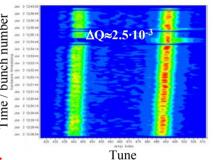

- Timing of kicker modules not absolutely stable, not acceptable with marginal rise time
- Drifted timing leads to vertical emittance increase of preceding bunch, possibly beam loss
- Hardware changes needed (W. Zhang), or increased maintenance (~weekly re-timing)

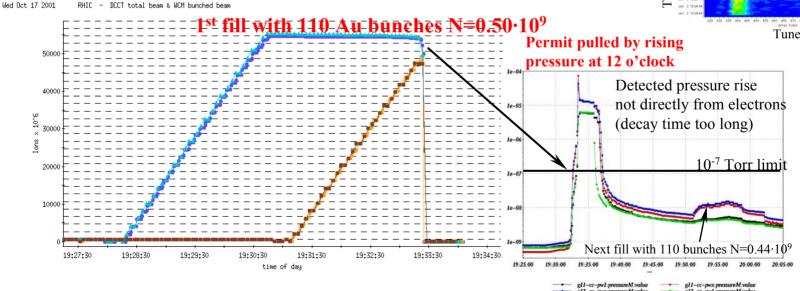

RF – Phase Detector

- Phase detector modifications were implemented for 120 bunch pattern (T. Hayes, L. Hoff) every other bunch ignored
- Successful test ramp (110 each with low intensity)
- Better solution for next run even and odd bunches sampled alternatively turn-by-turn

Synchronization of Blue and Yellow RF

No longitudinal separation possible in 120 bunch pattern


- Synchronization of Blue and Yellow RF would limit beam crossings per IP to 1 (1 or 2 without synchro)
- Synchronized beams have un-modulated beam-beam tune spread that scales with intensity (can also be used for Landau damping with 55 bunches)
- Synchronization only tested at injection (M. Brennan)


Pressure Rise

- Relevant beam parameters:
 - Bunch spacing (shorter spacing worse)
 - Ion species (no problems seen with protons, but no real 110 bunch test)
 - Intensity (very sensitive)
 - Not: charge per bunch

Pressure rise possibly related to e-clouds: Coherent tune shift observed along bunch trains in both planes

Yellow coherent tunes while being filled with 110 p bunches, Blue already filled with 110 p bunches (T. Satogata)

 $\Rightarrow N_b Z^n$?

Pressure Rise Cont'd

- Always in warm (field free) regions
- Faster with higher intensity (very sensitive) and shorter bunch spacing (216ns \rightarrow 108ns)
- Faster with two beams (effective shorter spacing in common regions)
- Typically with loss producing situations (injection, transition, orbit problems)
- Experimental solenoid magnet (~0.5T) ameliorates pressure rise
- Gaps of 1µs do not help

Summary 112 Bunches

- Injection kickers have marginal rise time and timing stability for 112 bunch operation
 - → Hardware improvements or increased maintenance needed
- Synchronization of Blue and Yellow RF limits beam crossings per IP to 1, and avoids tune modulation
 - → Can also provide un-modulated tune spread in 55 bunch operation
- No problems expected from BPM system or other instrumentation
- Pressure rise is the limiting effect for 112 bunch operation
 - → May prevent 112 bunches for gold
 - → Possibly ok for protons

